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ABSTRACT

Techniques are presented for detecting phoneme level mispro-
nunciations in utterances obtained from a population of impaired
children speakers. The intended application of these approaches is to
use the resulting confidence measures to provide feedback to patients
concerning the quality of pronunciations in utterances arising within
interactive speech therapy sessions. The pronunciation verification
scenario involves presenting utterances of known words to a pho-
netic decoder and generating confusion networks from the resulting
phone lattices. Confidence measures are derived from the posterior
probabilities obtained from the confusion networks. Phoneme level
mispronunciation detection performance was significantly improved
with respect to a baseline system by optimizing acoustic models and
pronunciation models in the phonetic decoder and applying a non-
linear mapping to the confusion network posteriors.

Index Terms— confidence measure, speech therapy

1. INTRODUCTION

The techniques developed in this paper are intended to be used as
part of a semi-automated system for providing interactive speech
therapy to a potentially large population of impaired individuals.
While there are several areas of diagnosis and treatment for patients
with speech and language disorders, the interest here is in the ac-
quisition of the phonetic systems of a language. User interaction
involves the patient receiving feedback evaluating the quality of pro-
nunciation of words presented in a therapy session. Automatic pro-
cedures for verifying the quality of phoneme level pronunciations
are proposed and evaluated in this paper.

This is part of a larger effort to evaluate the feasibility of a more
efficient, lower cost methodology for diagnosis and treatment of pa-
tients with neuromuscular disorders [1]. This methodology includes,
at its lowest level, an interactive dialog between the patient and an
automated system for performing training, collecting speech from
the student, and providing performance feedback. At the next level,
a mechanism exists for a non-expert to measure the performance of
the patient. This is provided through a simple, easily reproducible
scheme for labeling utterances at the phonemic level according to the
accuracy of pronunciation. At the highest level, the speech therapist
can assimilate the evaluations obtained from the interactive sessions,
review sample utterances, provide performance assessment, and pre-
scribe additional therapy.

The phoneme level pronunciation verification (PV) techniques
presented here are based on phone level measures of confidence that
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are derived from the acoustic speech utterance. Utterances of known
words are presented to a phonetic decoder and confusion networks
are generated from the resulting phone lattices. Confidence mea-
sures derived from the confusion networks are used to define a de-
cision rule for accepting or rejecting the hypothesis that a phoneme
was mispronounced. This decision can then be used to help provide
the speech therapy patients with feedback concerning pronunciation
quality.

It is well known, however, that dysarthria induced variation in
pronunciation is one of many sources of variability in the speech
utterance. Physiological and dialect variability exists among unim-
paired speakers and coarticulation is a fundamental source of acous-
tic variability in all speaker populations. It can be difficult for a lo-
calized measure of confidence to distinguish between some precon-
ceived notion of mispronunciation and naturally occuring variabil-
ity. Section 3 describes several approaches for reducing the effects
of other sources of variability on the decision rule described above.
An experimental study was performed to evaluate the ability of these
techniques to detect phone level mispronunciations in isolated word
utterances from impaired children. The results of this study are pre-
sented in Section 4.

2. SPEECH THERAPY TASK DOMAIN

2.1. Utterances of the Speech Therapy Corpus

Utterances were elicited from impaired and unimpaired children
speakers from 11 to 21 years old enrolled in a special education pro-
gram. The children were interacting with a multimodal computer-
aided speech therapy application called “Vocaliza” [1]. The Vocaliza
system provides a user interface that is designed for speech therapy
sessions with children and facilitates natural human-computer in-
teraction for children. All speech collected from both impaired and
unimpaired speakers consists of utterances of isolated words taken
from a vocabulary specified by the “Induced Phonological Register”
(RFI) [2]. It contains a set of 57 words used for speech therapy in
Spanish which are phonetically balanced and also balanced in terms
of their pronunciation difficulty.

The impaired children speakers suffer developmental disabilities
of different origins and degrees that affect their language abilities,
especially at the phonological level. It is believed that all speakers
suffer from a neuromuscular disorder so that all of them can be char-
acterized as having dysarthria. None of the speakers are known to be
hearing impaired or suffer from any abnormality or pathology in the
articulatory or phonatory organs.
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2.2. Pronunciation Labelling by Non-Expert Human Labellers

One very important aspect of a semi-automated system for interac-
tive speech therapy discussed in Section 3 is a mechanism for non-
experts to measure the performance and developmental progress of
patients. A simple manual system for phoneme level pronunciation
labelling was devised for this purpose. Phonemes in isolated word
utterances produced by impaired children speakers were labelled as
having been either deleted by the speaker, mispronounced and there-
fore substituted with another phoneme, or correctly pronounced.

This scheme was evaluated by having three independent non-
expert labellers label all phonemes in the speech corpus. Pairwise
inter-labeller agreement for the manual labelling task was 85.81%.
This use of a less-descriptive but highly repeatable labelling system
represents a trade-off that has enabled the study described in Sec-
tion 3. It is important because it addresses the trade-off between
the need for a consistent, repeatable, and easily implemented label-
ing strategy against the need for an accurate characterization of the
quality of pronunciation of a given phoneme. Analysis of the man-
ually derived labels shows that 7.3% of the phonemes were deleted
by the impaired speakers, and 10.3% of the phonemes were mispro-
nounced. These mispronunciations affect 47.7% of the words in the
database. The final label assigned to a given phoneme was chosen
by consensus among the labellers.

3. VERIFYING PHONEME PRONUNCIATIONS

This section describes techniques for detecting phoneme level mis-
pronunciations in utterances from the impaired children population
described in Section 2.1. There are three parts. First, a phoneme
level confidence measure is defined based on posterior probabilities
derived from a confusion network (CN). Second, acoustic model
adaptation approaches are presented for reducing the effects of
speaker and task variability on PV performance. Third, a nonlinear
mapping is described that incorporates a variety of additional infor-
mation to map the CN derived confidence measures into measures
that can better predict the manually derived pronunciation labels.

3.1. Phoneme Level Confidence Measure

In the phoneme pronunciation verification (PV) scenario described
in Section 4, it is assumed that the “target” word and its baseform
lexical expansion q = q1, . . . , qN are known. PV in this context
simply refers to obtaining confidence measures for each phoneme
in the baseform expansion and applying a decision rule for accept-
ing or rejecting the hypothesis that a given phoneme was correctly
pronounced. The process is performed in two steps. First, phonetic
decoding is performed on the given isolated word utterance where
search is constrained using a network that describes the pronuncia-
tions that might be expected from an unimpaired speaker.

Two simple approaches have been used to model this set of
expected pronunciations. First, a bigram phonotactic model was
trained from baseform phonetic expansions obtained from an 8 mil-
lion word subset of the Spanish language section of the Europarl
speech corpus [3]. This phonotactic bigram model was used to con-
strain search in phoneme recognition. Second, a network was trained
from observed pronunciations decoded from approximately 9600 ut-
terances taken from a population of unimpaired children speakers.
Using a phonotactic bigram language model was found to provide
the best performance of the two methods partly because of the su-
perior size of the training corpus. As a result, only the performance

of the bigram phonotactic pronunciation model is considered in Sec-
tion 4.

A phone lattice containing phone labels and their associated
acoustic and language probabilities is generated by an automatic
speech recognizer (ASR) acting as a phonetic decoder. A confusion
network is created from the phone lattice using a lattice compression
algorithm. The confusion network is a linear network where all arcs
that emanate from the same start node terminate in the same end
node. The ordering properties of the original lattice are maintained
in the confusion network. The posterior phone probabilities P (qn),
n = 1, . . . , N , appear on the transitions of the confusion network.

The last step associated with obtaining a phoneme level confi-
dence estimate involves identifying the confusion network transition
that most likely corresponds to the given target phoneme from the
baseform transcription. This posterior phone probability is used as
the phone-dependent confidence score. This is done by obtaining the
best alignment of the target baseform transcription phone string with
the original phone lattice. A decision criterion for verifying whether
a given target phoneme has been correctly pronounced can be imple-
mented by comparing these scores with a decision threshold.

3.2. Reducing variability through model adaptation

Acoustic model adaptation scenarios are presented here for reducing
the effects of sources of variability outside of those introduced by
the speech disorders existing among the disabled speaker population.
This section describes the baseline task independent acoustic model
training, task dependent model adaptation, and speaker dependent
model adaptation.

Baseline hidden Markov models (HMMs) are trained from the
Spanish language Albayzı́n speech corpus [4], which includes 6 800
sentences with 63 193 words. This corpus contains 6 hours of speech
including silence; however, only 700 unique sentences are contained
in the corpus. Because of this lack of phonetic diversity, it is difficult
to train context dependent models that will generalize across task
domains. For this reason and because of the simplicity of this small
vocabulary task, context independent monophone models are used
here. In all experiments, 25 monophone based context independent
HMMs are used which consist of 3 states per phone and 16 Gaussian
distributions per state. MFCC observation vectors along with their
first and second difference coefficients are used as acoustic features.

Task dependent acoustic model adaptation is performed using
isolated word adaptation utterances from the same vocabulary de-
scribed in Section 2. The utterances are obtained from a population
of 120 unimpaired children speakers resulting in a total of 6,840 ut-
terances and 4.5 hours of speech. Combined maximum a posteri-
ori (MAP) and maximum likelihood linear regression (MLLR) [5]
based adaptation is used to adapt the means of the distributions of
the baseline model listed above.

Supervised speaker-dependent adaptation for each of 14 im-
paired test speakers is performed using an MLLR based transform
applied to the Gaussian means of the task-dependent HMM. For
each speaker, a single MLLR transform matrix is estimated from
2.2 minutes of speech. The supervised speaker-dependent MLLR
transformation is then applied prior to verifying the phoneme level
pronunciation of the impaired children speech utterances.

Even a supervised speaker adaptation paradigm is problematic
for the impaired children population since the utterances contain
many phonemes that are known to be mispronounced or deleted. It
is possible, however, to modify the adaptation procedure to incor-
porate the pronunciation labels obtained from the human labellers.
This was done for MLLR adaptation to the impaired speakers by
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creating two regression matrices. One regression matrix was es-
timated from occurrences of phonemes in the adaptation data that
were labelled as being correctly pronounced and another matrix was
estimated from occurrences of phonemes that were labelled as being
incorrectly pronounced. During recognition, only the first matrix
was applied to transforming the mean vectors of all model distri-
butions. Phonemes in the adaptation data that were labeled by the
human labellers as having been deleted by the speaker were sim-
ply deleted from the reference transcription during adaptation. This
procedure, referred to later as “Label Supervised MLLR”, is similar
in spirit to unsupervised adaptation procedures that rely on acoustic
confidence measures [6]. These procedures apply varying weight to
regions of an adaptation utterance to reflect the relevance of the re-
gion to the distributions being adapted. It is shown in Section 4 that
significant performance improvement can be obtained by exploiting
the supervision provided by the human labellers.

3.3. Non-linear Mapping of Posterior Probabilities

A nonlinear transformation is performed to map the lattice posterior
probabilities to phone level confidence measures. There are two mo-
tivations for this. The first motivation stems from the fact that all
of the PV techniques presented here are evaluated in terms of their
ability to predict the labels defined by the labeling scheme defined in
Section 2.2. The decision made by an expert as to whether a given
occurrence of a phone is classified as being “mispronounced” rather
than as a “pronunciation variant” will always have a subjective com-
ponent. There is no guarantee that the posterior probabilities esti-
mated as described in Section 3.1 will always be accurate predictors
of these labels.

The secondmotivation is the fact that there is a great deal of prior
information available in this PV scenario. This includes knowledge
of the target word, the target phone, and the position of the phone
within the word. This prior information can be combined with the
phone level posterior probability using one of many possible fusion
strategies to better predict the human derived labels.

In the experimental study described in Section 4, the parameters
of a single layer multilayer perceptron with the above parameters as
input are trained to implement a non-linear transformation. Back-
propagation training is performed for a network with input activa-
tions which include the phone level posterior probabilities, indicator
variables corresponding to each of the phone labels, and optional in-
dicator variables corresponding to speaker identity. The network is
trained with the human derived pronunciation labels serving as tar-
gets. PV is performed using the output activations obtained from this
network on test utterances.

4. STUDY OF PV PERFORMANCE

This Section evaluates the performance of the pronunciation veri-
fication techniques presented in Section 3. For each isolated word
test utterance, the task is to verify the claim that the pronunciation
of phonemes in the baseform expansion of the word is correct ac-
cording to the human labels assigned using the labeling scheme de-
scribed in Section 2.2. This is thought to be a reasonable predictor
of the performance of a system for providing feedback to patients
concerning the quality of word pronunciations during an interactive
therapy session.

In all of the mispronunciation detection experiments, the perfor-
mance is presented using the equal error rate (EER) measures that
can be obtained from the detection error trade off (DET) curves.
The EER is computed by applying a threshold to the phone level

Phoneme level Verification Performance (EER)
Acoustic Model zerogram bigram

TIND - Baseline 25.3% 22.2%
TDEP - MAP/MLLR Adaptation 19.7% 18.4%
SDEP - MLLR Adaptation 18.3% 17.1%
SDEP - Label Supervised MLLR 17.2% 16.2%

Table 1. Phoneme detection performance measured using EER

confidence scores and identifying the threshold setting where the
probability of false acceptance is equal to the probability of false
rejection. All the results reported in this section are obtained us-
ing a test set consisting of 2,394 utterances from 14 impaired chil-
dren speakers resulting in a total of 12,264 monophone test trials.
These include 10,083 phonemes labeled by human labellers as being
correctly pronounced and 2,128 labelled as incorrectly pronounced.
The 2,128 ‘incorrect’ test trials correspond to phoneme instances that
have been either mispronounced by the test speaker (substituted for
another phoneme) or deleted altogether.

Table 1 displays the PV performance as percent EER obtained
from the confusion network derived posterior probabilities as de-
scribed in Section 3.1. Results are presented using four different
acoustic HMM’s and two different pronunciation networks in the
phonetic decoder. The column labelled “bigram” in Table 1 corre-
sponds to the case where the bigram phonotactic network described
in Section 3.1 was used for decoding. The column labelled “zero-
gram” corresponds to the case where an unconstrained phonotactic
network was used. The first row of the table displays the perfor-
mance for the baseline HMMmodel described in Section 3.1. While
a baseline EER of 25 percent is relatively poor, it is interesting to
note that the bigram network results in 12.4 percent reduction in EER
relative to the unconstrained phone decoder. The bigram network re-
sults in smaller but consistent reductions in EER for all conditions.

The second row of Table 1 shows that combined MAP/MLLR
task dependent (TDEP) adaptation to the unimpaired children cor-
pus results in approximately twenty percent decrease in EER. This
rather significant improvement is due largely to the significant mis-
match in speaker characteristics that exists between the largely adult
speaker population in the Albayzı́n corpus and the unimpaired chil-
dren speaker population in the adaptation corpus.

The third row of Table 1 displays the EER for speaker depen-
dent (SDEP) MLLR adaptation of the TDEP HMM models using
2.2 minutes of speech from each test speaker. This results in a de-
crease in EER of approximately 7 percent with respect to the TDEP
performance in the second row. Note that the speaker dependent
adaptation data includes both correctly pronounced phonemes and
phonemes that were mispronounced by the impaired speakers. In-
cluding the mispronounced phonemes in the adaptation data may
limit the potential performance improvements that are achievable in
this scenario. The fourth row of Table 1 displays the result after per-
forming SDEP adaptation using the “label supervised” MLLR adap-
tation described in Section 3.2. The corresponding results show that
when the MLLR regression matrix is trained only from phoneme
segments that have been labelled as being correctly pronounced, the
relative reduction in EER increases from 7 to 12 percent with respect
to the TDEP EER.

Table 2 provides a comparison between PV performance ob-
tained from the CN derived posterior probabilities and from the NN
based nonlinear mapping (NLM) described in Section 3.3. All of the
results in Table 2 were obtained from a phone decoder with TDEP
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Comparison of CN and NLM Confidence Scores (EER)
Confidence Score Definition zerogram

CN Posteriors - TDEP (MAP/MLLR) 19.7%
NLM - Context Input 18.1%
NLM - Speaker and Context Input 14.9%

Table 2. Comparison of confidence scores derived from CN posteri-
ors and from NLM of CN posteriors
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Fig. 1. Histogram plots for the phone context “sil-k+a” dependent
scores obtained from the SDEP Label Supervised MLLR adaptation
and the SDEP NLM, respectively. Zerogram network used in ASR.

adapted acoustic models and an unconstrained phonotactic network.
The first row of the table is taken from the corresponding result in
Table 1. The second and third rows of Table 2 display the EER ob-
tained using NLM’s trained from the same 2.2 minutes of speech
from each test speaker that was used for training the SDEP mod-
els in Table 1. The second row of the table corresponds to the case
where, in addition to the CN derived posteriors, only the context at-
tributes were input to the NN. This corresponds to an 8% relative
reduction in EER with respect to the performance obtained using
CN posterior probabilities. The third row of Table 2 corresponds
to the case where speaker attributes (indicator variables specifying
speaker identity) were also input to the NN. This corresponds to a
more substantial 23% relative reduction in EER with respect to the
performance obtained using CN posterior probabilities.

To provide an illustration of how the NLM enhances the distribu-
tion of the phone level PV scores, score distributions for an example
phone in context are plotted before and after the NLM in Figure 1.
The histogram plots in Figure 1 were obtained from 139 correctly
pronounced and 39 incorrectly pronounced samples of the phone
context “sil-k+a”, where “sil” represents an initial silence. The CN
based confidence scores, along the top row of Figure 1, are obtained
using the best SDEP acoustic model with performance given in the
fourth row of Table 1. The NLM based confidence scores, along
the bottom row of the figure, are obtained from the NLM that pro-
vided the best PV performance given in the third row of Table 2. For
each case, the distributions of scores for examples labelled as being
correctly pronounced and incorrectly pronounced are shown in the

figure. It is clear that the NLM does indeed significantly reduce the
overlap of the correct and incorrect distributions resulting in a better
detection characteristic for the Spanish phoneme “k” in this context.

5. CONCLUSION

Simple phoneme level confidence measures based on confusion net-
work posterior probabilities were found to provide reasonable per-
formance in detecting mispronunciations in utterances taken from
the impaired children corpus described in Section 2. However, after
adapting acoustic models and performing nonlinear mapping of the
CN posteriors as described in Section 3, a relative forty percent im-
provement in detection performance was obtained. This corresponds
to an improvement from 25 percent equal error rate for the baseline
system to 14.9 percent equal error rate for best system presented
in Section 4. The results obtained here demonstrate that the abil-
ity to detect mispronunciations resulting from neuromuscular disor-
ders can be significantly improved by reducing the effects of other
sources of variability in speech. It is believed that the confidence
measures used in this system achieve a performance that is close to
that necessary to provide useful feedback to impaired speakers in
language learning and speech therapy applications.
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